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Abstract

With increasing availability of high-performance com-
puter clusters, a key bottleneck in computational biology re-
search is the handling of metadata: information about com-
putational jobs, locations of files, staging input and output
data where it is needed, and application-specific data al-
lowing searching and querying the results of computations.
By examining the needs of PLATCOM, a gene similarity
platform, general requirements are derived for a data man-
agement architecture, from which particular data manage-
ment systems can be quickly composed. The prototype ar-
chitecture is described and its application to genome com-
parative analysis in PLATCOM is shown in detail.

1. Introduction

Computational biology applications commonly need
large scale data management of input/output files, ac-
cess to shared and private databases, and the managment
of data related to running large numbers of jobs on par-
allel computers at remote sites, typically through a batch
manager and scheduler. The data may require curation un-
related to the actual bioinformatics computation, such
as transfer to and from archival tape storage. The scien-
tific goals of computational biology (e.g., gene expression,
evolutionary tree optimization, data mining) and meth-
ods are varied and quickly evolving, so a single data
managment system is unlikely to be optimal or even suit-
able for all laboratories, or even a single laboratory as its
purview evolves. Instead, the ability to rapidly create cus-
tomized data management systems is a potentially enabling
technology for bioinformatics.

An example of this need is PLATCOM (Platform for
Computational Comparative Genomics) [13], an integrated
computational biology system for the comparative analy-
sis of multiple genomes. One of the internal databases that
PLATCOM incorporates is derived from GenBank [12] by
performing pairwise comparisons of protein-to-protein and

whole genome-to-whole genome sequences using FASTA
[20] and BLASTZ [22] respectively, which entails over
48,000 similarity computations initially, and several hun-
dreds more every couple of months afterwards as the Gen-
Bank grows. Each new addition to GeneBank leads toq ad-
ditional computations, whereq is the current number of se-
quences in GeneBank. These computations need to be au-
tomatically triggered and managed without requiring direct
intervention by a researcher.

The large number of computation jobs in PLATCOM
has presented several data management challenges such
as input/output file staging, statistical metadata manage-
ment, resource acquisition, and fault-tolerant job submis-
sion. Many scientific applications face similar problems, but
often vary on their detailed requirements. Rather than build-
ing a monolithic system that attempts to handle all aspects
of data management, a different approach has been devel-
oped: a component-like architecture consisting of utilities
such that each does one simple task well, and together they
can be rapidly and easily assembled to create customized
data management systems.

Common scientific data management needs have been
coarsely classified, and a set of functionally orthogonal
components identified, each dedicated to solving one sim-
ple problem. Since different applications often require or
prefer different computation environments, and some exist-
ing software is already mature and widely-used for certain
tasks, a goal was to reuse existing tools whenever possi-
ble. A layered style architecture [23] is thus presented that
supports increasing levels of abstraction, enhancement and
reuse. Such an architecture is flexible and easy to adapt to
different platforms and software tools used at lower level,
while at the same time providing a uniform interface for de-
veloping higher level application-specific data management
systems. This provides a general solution for diverse scien-
tific data management problems using a well-known com-
puter science dictum[18]:

Make each program do one thing well. To do
a new job, build afresh rather than complicate old
programs by adding new features.
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This prototype component architecture for data man-
agement (Obsidian) is being used for computational bi-
ology and other scientific applications. This paper first
closely studies PLATCOM data management require-
ments and why some popular existing systems are not
desired in this case. The functional component set of Obi-
sidian is then derived, generalized, and finally applied to
PLATCOM.

2. Data Management Requirements in PLAT-
COM

PLATCOM [13] provides an integrated compara-
tive genome analysis environment that facilitates the design
of experimental protocols. It consists of a set of inter-
nal databases and a suite of genomic analysis tools for plot-
ting, visualization, gene fusion event detection, metabolic
pathway analysis and gene clustering.

Most internal databases such as GenBank [12], Swiss-
Prot [10], COG [24], and KEGG [2] are downloaded from
public domains. In order to increase the performance of
real-time multiple genome comparison computation, PLAT-
COM also pre-computes and maintains a Pairwise Compar-
ison Database (PCDB). Initially, PCDB consists of 97,034
pairwise comparison entries for both protein sequence files
(.faa) and whole genome sequence files (.fna) of 312 repli-
cons, which currently entails 48,516 FASTA computations
to generate unduplicated protein-to-protein pairwise com-
parison matches.

FASTA [20] programs provide sequence similar-
ity searching against nucleotide and protein databases. The
fasta34 series can run both as threaded parallel and dis-
tributed memory parallel using PVM and MPI. Two input
files define the two sequences to be compared, and an out-
put file contains a detailed report including a histogram, list
of hits, and alignments.

To improve storage and performance, PLATCOM pro-
cesses the FASTA output further to extract only useful infor-
mation (id, z-score, e-value, SW score and match region) for
both query and matching sequences, and stores the resulting
ASCII file in PCDB. This parsing procedure is tightly cou-
pled with each FASTA computation performed. PCDB fol-
lows the same UNIX filesystem directory structure as that of
GenBank, and creates a subdirectory under the query pro-
tein (as opposed to matching protein) to store the parsed
FASTA results.

The initialization and continuous evolvement of PCDB is
a tedious task without help from a comprehensive data man-
agement system, which can automatically stage input and
output files, interface with batch managers on remote super-
computer facilities to carry out FASTA computations and
result parsings, securely transfer files between the remote
and the local site, and possibly create an archival copy on

backup tape. This data management system is also needed
to keep track of historical information (i.e. metadata) about
job submission, completion status, and computation perfor-
mance to facilitate failed job discovery and future statistical
analysis.

For each computational job, the metadata that PLAT-
COM needs include sequence file locations, participating
protein IDs, hardware and operating system configurations,
who submitted the job using which version of FASTA with
what parameter settings, when the jobs was submitted, how
long did the computation and result parsing take, what was
the CPU and memory usage, and the exit statuses of the job.
Multiple exit statuses occur from the FASTA job as a Unix
process, the exit status returned by the batch manager, that
of a harness script managing the job submission to the batch
manager, and even the scientist’s satisfaction with the re-
sults.

These metadata are both general and specific. General in
the sense that any one of them could be of concern to some
other applications, while specific in the sense that PLAT-
COM cares about only this particular combination of them.
The data management system to be developed should effi-
ciently manage just this set of metadata and not require the
end user to deal with irrelevant categories.

3. Related Work

Until recently ad hoc data management in computa-
tional biology and most other scientific computation was
adequate. Running 48,000 parallel jobs could take years to
complete, providing plenty of time for scientists to stage in-
put files, move output results to longer-term storage, and
relaunch failed jobs by hand. Data would typically start on
the computational platform and output results would remain
there until analyzed. The increasing availability of fast par-
allel platforms and cheaper local hard drive storage now
means that the rate of generation of scientific metadata from
computation exceeds the capabilities of approaches that re-
quire human intervention in the minutia of data manage-
ment.

Distributed filesystems such as AFS and NFS aid in hid-
ing the complexity introduced by the use of distributed sys-
tems, by making remote files appear to be in a local di-
rectory. This requires coordination between administrative
domains for user identification and authentication, and can
cause computational job failures if a remote input file is
not immediately available because of network problems. In
general a distributed filesystem does not coordinate data and
workflow, and is at best a partial metadata solution.

The SDSC Storage Resource Broker (SRB) [21] can
provide distributed clients with a uniform interface to ac-
cess heterogeneous underlying data storage resources
such as databases, filesystems, and tape storage. Meta-



www.manaraa.com

Data Catalog (MCAT) [4] is a metadata repository mainly
in support of resource discovery for SRB. MCAT cate-
gorizes general metadata according to five primitive en-
tities, and distinguishes the notion between system-level
metadata and application-level metadata, i.e. informa-
tion not generalizable as primitive-related metadata are
application-level metadata. MCAT architecture design al-
lows the creation of arbitrary application-level metadata,
although the corresponding implementation level sup-
port is limited.

MCAT has introduced a comprehensive metadata man-
agement architecture and some excellent concepts for meta-
data categorization. However, it provides neither a solu-
tion adequate for PLATCOM or a panacea for scientific
metadata management in general. The system-level meta-
data schema MCAT chooses best represents the informa-
tion that SRB requires, and the application-level metadata
support is limited to string text which is not searchable via
relational queries. From the view of PLATCOM data man-
agement needs, most metadata in that schema is redundant,
while at the same time, the schema is not sufficient to rep-
resent and query the execution and performance metadata
needed. Other applications face similar situations when us-
ing MCAT, which is an inherent problem of generalizing a
universal metadata schema in practice.

As with any single integrated system, MCAT also has
several implementation level limitations, the biggest one of
which for PLATCOM is the complexity of system installa-
tion and maintenance. MCAT is tightly coupled with SRB
so that one can not be easily installed and work correctly
without interacting with the other. Experience has shown
that it takes significant administrative effort to configure and
build an MCAT-enabled SRB system as a long-term reliable
service.

The Condor [11] workload management system from
the University of Wisconsin-Madison can seamlessly com-
bine distributed computational power into one resource,
and transparently migrate a job from one machine to an-
other without requiring a shared filesystem across them. It
can succeed with many job management tasks, especially
effectively harnessing wasted CPU power from otherwise
idle desktop workstations. However, it targets job manage-
ment instead of the metadata and workflow management as
needed by PLATCOM, and similarly to MCAT, Condor re-
quires non-trivial administrative effort and privileges.

Many supercomputer facilities or workstation clusters
use batch managers such as PBS [7] to enforce resource al-
location policies among users. This is often sufficient for
resource acquisition of most computional biology applica-
tions including PLATCOM. However, neither Condor or
popular scientific workflow management systems like KE-
PLER [9] and Triana [17] address one particular need of
PLATCOM, which is to interface with an existing batch

manager like PBS, and automatically submit a large num-
ber of simple workflow jobs.

Several other major on-going data management efforts
are either grid-oriented and more suitable for large collab-
orations like the GeneGrid [15], or more specialized for a
particular problem or environment that is not applicable to
PLATCOM. Scientific Annotation Middleware (SAM) [19]
provides a set of services to support the creation and se-
mantic translation of annotation metadata; Chimera Virtual
Data System [14] aims at representing data derivation pro-
cedures and enabling on-demand data (re)generation; Lab-
oratory Information Management Systems (LIMS) [25] are
widely used in pharmaceutical and life science applications,
and often come as off-shelf commercial products, mostly
PC-based for Windows operating systems.

4. Obsidian Data Management Architecture

PLATCOM data management requirements lead to the
following orthogonal components needed to build a cus-
tomized solution: a secure file transfer mechanism, a light-
weight relational database backend, a metadata schema
about FASTA job submission, execution and performance,
a mechanism to keep track of input/output file locations,
and finally a fault-tolerant automatic job (re)submission
method.

Mature products already exist for secure file transfer,
e.g. SCP and GRIDFTP [1]. Relational database backend
also has many possible choices. With the preference for
open source and both Windows and Linux implementations,
MYSQL [5] and POSTGRESQL [8] are available. A re-
lational schema for job submission, execution and perfor-
mance metadata is easily defined in SQL, as well as a re-
lational schema for keeping track of file locations in the
database. Since PLATCOM computation jobs only differ in
their input protein sequence files, automatically submitting
thousands of such jobs to a local batch manager and sched-
uler can be implemented easily in many scripting languages.

However, the challenge lies in tying all the pieces to-
gether in a distributed environment and making the job sub-
mission procedure fault-tolerant. When a job fails and no
output file is produced as expected, the reason should be
readily identifiable: is it at the software level such as wrong
parameter settings and corrupted input files, or at the hard-
ware level such as a crash of a compute node? The locations
of the original pair of protein sequence files also need to be
identified to resubmit the job. These tasks are not hard to do
manually with only a few dozens of jobs to manage, but be-
come impractical without a good data management support
when the number goes to thousands.

A more important question is how to build a portable and
reusable solution. While another scientific application is un-
likely to have exactly the same data management require-
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ments as PLATCOM, many scientific applications are fac-
ing similar kinds of data management challenges. They may
require a different metadata schema, work with a differ-
ent operating system, or use a different relational database.
But they all need to keep track of their data object loca-
tions, store, update and query their own metadata, or se-
curely transfer data objects between local and remote sites,
between disk and tape storage, etc.

Obsidian is a component-like layered architecture that
addresses this issue. Obsidian builds a general scientific
data management solution not as a generic system for all
applications, but instead as a toolkit for each application to
compose its own specialized system. This approach is par-
ticularly suitable to meet data management needs from in-
dividual scientists or moderate sized collaborations, where
an efficient and light-weight solution is typically preferred.
Common scientific data management involves the follow-
ing three major aspects about data objects:

• Physical accessibility: i.e. keep track of physical loca-
tions of data objects and securely transfer them as de-
sired for access or storage;

• Logical relationship: i.e. categorize data objects into
different collections according to pre-defined logical
relations to better characterize relationships among
data objects, and therefore their corresponding appli-
cation components;

• Information representation: i.e. define, store, and query
information of interest related to, or represented by
data objects for statistical or analytical studies.

Unique identifiers, either universally or within an applica-
tion domain, are often needed to cross-reference data ob-
jects and logical collections with other information. From
these common data management needs, the following in-
dependent functional components to facilitate building spe-
cialized data management systems have been derived:

• Unique ID Generator that generates either univer-
sally or application-specific unique identifiers;

• Data Object Accessorthat provides I/O operations
functionally similar to cp, mv, rm, zip and tar on dis-
tributed data objects across both disk and tape storage;

• Physical Location Tracker that defines a rela-
tional schema on application-independent metadata
about data objects (e.g. type, size, location), and pro-
vides interfaces to archive, query, and update these
metadata, especially the physical data object loca-
tions;

• Logical Collection Manager that provides a mech-
anism to create, update, query and delete identifier
collections in a relational database based on arbitrary
user-defined relationships;

• Annotation Manager that manages notes and annota-
tions about identifiers as text blobs, and also provides
corresponding create, update, retrieve and delete inter-
faces to the underlying database;

• MDB Handler similar to ODBC (Open Database
Connectivity) [6], and provides a simple program-
ming interface to allow SQL query and update on
application-specific metadata databases, assum-
ing the user knows the underlying relational schema.

The components defined above are orthogonal to each other
and can be combined in different ways to meet different ap-
plication needs. Note that no generalized metadata schema
is enforced, because it is often more straightforward and ef-
ficient to first define application-specific metadata relations
in the database directly. This is a one-time effort for each
application, and afterwards the MDB Handler is used to ac-
cess and manage the metadata programmatically.

Obsidian consists of three layers. At the bottom layer
are basic component units of various existing, widely-used,
fundamental tools, ranging from low-level filesystem calls
such asCP and MV , to full-fledged mature software pack-
ages like GRIDFTP and MYSQL. The middle layer in-
cludes the set of functionally orthogonal components as de-
fined above, implemented using bottom layer component
units. At the top are specialized data management systems
(DMS) built with some or all of the middle layer com-
ponents. One middle layer component may have multiple
implementations using different bottom layer units, all of
which provide the same functionality and interface to the
top layer. For example, the copy function of Data Object
Accessor component can be implemented using UNIXCP,
SCP, GRIDFTP, or HSI to duplicate an existing data ob-
ject at a different location. Middle layer components may
also be implemented in high level scripting languages such
as Perl, which are platform independent. This organization
has allowed easy plug in and out bottom layer units to meet
different application requirements, while not affecting the
programming interface provided by the middle layer com-
ponents for building a specialized top layer data manage-
ment system. With the given maximum freedom of choos-
ing bottom layer supporting units a customized solution can
be built with minimal administrative privileges, sometimes
strictly in user space. Since middle layer components are in-
dependent with each other, Obsidian is naturally extensible
as more functional middle layer components are identified.

Figure 1 depicts the overall Obsidian architecture as de-
scribed above. Highlighted pieces are those used for creat-
ing the PLATCOM solution discussed in Section 5.

5. PLATCOM Job Management Solution

Currently all PLATCOM computation jobs are carried
out on a remote IA32-based Linux cluster called AVIDD



www.manaraa.com

Figure 1. Obsidian Components

at Indiana University Bloomington campus. AVIDD em-
ploys PBS Pro [7] and Maui [3] to manage computing re-
sources and schedule jobs. All input sequence files and
parsed FASTA results are stored on a local workstation
called platcom, outside the AVIDD administrative domain.

Based on the Obsidian architecuture, a comprehensive
job management solution (JMS) has been implemented to
coordinate data and workflows between AVIDD and plat-
com. The JMS uses MYSQL as the backend metadata
database (MDB), andSCPas the secure file transfer mech-
anism. By composing highlighted Obsidian middle layer
components in Figure 1, all of the functionality described
below has been implemented with fewer than 300 lines of
Perl code.

JMS takes as input the complete list of current protein
sequence files. Figure 2 demonstrates the job management
procedure in detail.

1. For each given protein pair to be compared, JMS
generates a corresponding PBS job submission script
that archives submission metadata, invokes parallel
FASTA, and summarizes comparison results.

2. It then transfers corresponding input files and the sub-
mission script generated from platcom to AVIDD.

3. The job is in turn submitted to the PBS queue, waiting
to be scheduled for execution when resources become
available.

4. Upon completion, the parsed result file is transfered
back from AVIDD to a designated location on platcom.

Figure 2. Job Management Workflow for Plat-
com

5. Periodically, JMS parses execution status reports gen-
erated by PBS and archives execution and performance
metadata in MDB.

Tables 1–3 define MYSQL database tables describing
the relational schema for job submission, execution and per-
formance metadata in PLATCOM. Job submission meta-

Executions

EID Unique Execution ID
genome1 Unique input Genome ID
genome2 Unique input Genome ID

host Computing host name
sysinfo System hardware configuration

command Complete computation command
timestamp Job submission time

contact User contact information
PBSJOBID Unique PBS Job ID

dest Output file destination

Table 1. Job Execution Metadata

PBSJobReports

EID Unique Execution ID
exitstat Computation exit status

cpupercent CPU usage percentage
cputime CPU time used (sec.)

mem Memory used (kb.)
ncpus Number of CPUs used
vmem Virtual memory used (kb.)

walltime Wall-clock time used (sec.)

Table 2. Batch Manager Metadata
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Genomes

GID Unique Genome ID
name Genome name

genbankTag Corresponding GenBank Tag
loc Absolute file location

Table 3. File Metadata

data in Table 1 is associated with job execution and perfor-
mance metadata in Table 2 through the PBSJOBID field.
Since Table 1 is populated before the computation, while
Table 2 is populated after, this layout allows updating one
table without having to query another.

When a job execution failure is detected either from its
exit status or abnormal hardware behavior, the above meta-
data schema allows quickly finding out the job submission
metadata, particularly physical locations of corresponding
input sequence files, so that the job failure cause can be an-
alyzed and the job relaunched accordingly.

When running parallel jobs on a shared cluster like
AVIDD, the trade-off between execution speedups by re-
questing more processors and extended the wait time in
queue to get those processors must be balanced. To find
the optimal number of processors to requst for each paral-
lel FASTA job, a sample set of 400 randomly selected jobs
was tested before going into the production mode. Those
jobs were further equally divided into 5 groups, each group
of jobs requesting 2, 4, 8, 16, and 32 processors for execu-
tion respectively. Figure 3 is the speedup plot based on the
average execution time for each group. As the data clearly
shows, four processors gives the optimal performance and
actually results in superlinear speedup. So each parallel
FASTA job requests four processors in the corresponding
PBS script.

AVIDD enforces the usage policy of at most 64 running
or idle jobs per user, to maintain system load balance. The
resource availability rate varies greatly from time to time,
the JMS incorporates an automatic monitoring mechanism
which checks the queue status every 30 seconds and sub-
mits more jobs whenever the number of queued jobs falls
below the maximum threshold. This mechanism has greatly
enhanced the resource utilization on such a busy system as
AVIDD.

In the production mode, it took 33 days for all 48,516
jobs to complete correctly, averaging 1470 jobs per day.
During this time, AVIDD experienced several kinds of sys-
tem failures, including Maui hanging, Myrinet card failure,
failed NFS mounts and degraded GPFS (General Parallel
Filesystem) services. Several dozens of jobs failed either di-
rectly because of these system failures, or because the ex-
ecution time exceeded the expected maximum and the job
was killed by PBS. JMS was able to recover from all these

Figure 3. Parallel Speedups for FASTA

failures and relaunched failed jobs successfully.

6. Status and Future Work

The Obsidian architecture’s middle layer components
have been implemented with several programming lan-
guage bindings including Perl, C/C++ and Java. Besides
PLATCOM, Obsidian is being used to build customized
data management systems for a wide range of scientific ap-
plications such as x-ray diffractometry, radiation therapy
health records, and automated photometry in astronomy.
The applicability of the Obsidian architecuture will be fur-
ther studied, and possibly the orthogonal middle layer com-
ponent set refined as new needs are encountered. In a near
future, the interfaces of these components will be defined in
Scientific Interface Definition Language (SIDL) [16].
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